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Numerical calculations for stress transfer between a single fibre and a surrounding
three-dimensional elastic medium are presented. We study systematically the effect of fibre
parameters on stress transfer between the fibre and the matrix. We pay special
attention to fibres at an oblique angle with respect to the external strain, as well as to the
case of a fibre breaking into two parts of equal size at the middle. According to the
simulations, for a small ratio of elastic moduli of the fibre and the matrix, δ = Ef/Ebg, the
largest stresses are seen near the breaking point of the fibre for the latter case. For short
fibres, δ has little effect on pressure increase next to the breaking point. This is due to the
fibres being shorter than the critical length. For such short fibres, the numerical results for
the maximal axial stress are in agreement with a logarithmic dependence on δ. C© 1999
Kluwer Academic Publishers

1. Introduction
The elastic properties of long-fibre reinforced com-
posites are well understood theoretically [1]. More re-
cently, the effect of fibre fracture in long-fibre compos-
ites has been studied with numerical simulations using
Green’s lattice functions method [2–4]. From a techno-
logical viewpoint, however, the use of long fibres is not
a cost-effective way of reinforcing materials. Subse-
quently, the micromechanics of composites consisting
of either a random or textured placement of short fi-
bres embedded in a matrix is an active field of research.
Often the mechanical properties of composites are cal-
culated by studying stress transfer between a fibre and
the matrix. From the physics point of view, thisstress
transfer analysisreflects the fact that at different loca-
tions in the fibre–matrix interface, a varying amount of
stress is transferred to the fibre from the matrix. As an
example of stress transfer thinking, Cox’s [5] so-called
shear-lag model appears to be a good way of predicting
the mechanical properties of composites for low strains
and small volume fractions of fibres [6].

The shear-lag theory yields the following prediction
for axial stress in the fibre as a function of the axial
co-ordinate,σf (x)

σf (x) = Efεx

(
1− coshgx/wf

coshβl f/wf

)
(1)

Above,l f andwf are the length and the width of the fibre,
the axial coordinatex ∈ [−l f/2, l f/2] and the constant
g is given by

g =
(

2Gm

Efγ

)1/2

(2)

Above, Gm is the shear modulus of the matrix,Ef is
the elastic modulus of the fibres andγ is a geometrical
factor dependent on the placement of fibres and volume
fraction (i.e. the number of fibres) thereof.

When strains are large enough to give rise to rupture
in the fibre–matrix interface, the predictive power of the
shear-lag model is weakened considerably. Interactions
between the stress fields of individual fibres render the
effective medium approximation-type theories insuffi-
cient for use in predicting the mechanical properties of
composites where the volume fraction of fibres is high.
In addition, axial stress transfer–not accounted for by
the original shear-lag theory–has been shown to take
place near fibre ends [7, 8]. Recently, extensions to the
shear-lag theory have been proposed, which also take
into account axial stress transfer [9, 10].

The mechanics of a system consisting of a matrix
and of single fibres aligned in the direction of exter-
nal strain have previously been studied numerically us-
ing discrete representation of the elastic problem [7,
11–16]. In addition, finite element modelling of the im-
mediate surroundings of a fibre has been used, e.g. to
address interfacial stresses [17, 18]. Simulations have
been employed to study subjects like elastic modulus
of the composite [11, 12] and stress transfer between
the matrix and the fibres [7, 11–13]. A major motiva-
tion in the study of systems consisting of a single fibre
in a matrix has been the applicability of shear-lag-type
models and the study of the dependence of the critical
length on the ratio of the elastic moduli of the fibre and
the matrix. (The critical length is essentially the length
of that part of the fibre that does not carry full load [6].)
Previously cited results have been presented for fibres
that are longer than the critical length.
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(a) (b)

Figure 1 (a) Dependence of stresses in the matrix in a cut taken along the length of the fibre. (b) The perpendicular stresses at the edge of the system
(¦) and next to the fibre (+). In both cases, the ratio of the elastic modulus of the fibre and the matrixEf/Ebg= 8 and the length of the system in the
x-direction isLx = 80. In (b), the width of the system is given in units ofLx . Please note that in this figure, the external strain,εx = 0.035, has been
applied instead of the smaller value used later.

In this work we present results for changes in the
stress field of a matrix around a single fibre with perfect
bonding between the fibre and the matrix. The stress
state of the matrix is modelled using pressure,p. Tech-
nically, pressure is defined as the first invariant of the
stress tensor,T , or

p′ = 1

3
TrT = 1

3
(σ1+ σ2+ σ3) (3)

in the principal stress co-ordinates. In the following,
we use the variablep = 3p′ (i.e. total pressure) as
a convenient scalar measure to characterize the stress
state of the matrix.

In Section 2, the numerical models used are pre-
sented. The results of the simulations for fibres in the
direction of external strain are shown in Section 3.1.
and those for fibres at an oblique angle in Section 3.2.
A subject of interest with respect to experiments, we
study the effect of fibre breaking in Section 3.3. Our
conclusions are drawn together in Section 4.

2. Numerical model
For numerical simulations we have used a linearized
bond bending network in three dimensions. The net-
work consists of a simple cubic arrangement of bonds
in a regular lattice. The bonds have bending stiffness in
addition to spring stiffness. The discretation scheme can
be viewed as a coarse-grained representation of the mi-
cromechanics of a solid material on large length scales
[19]. We chose to use bond bending because the spring
model (vanishing bending stiffness) suffers from the
drawback that its Poisson’s constant is zero [7–20], and
the shear modulus vanishes for a non-perturbed hyper-
cubic lattice [19]. Another alternative, the beam model,
is a discretation of Cosserat-type elasticity [21, 22].
However, we need not consider local rotational degrees
of freedom in our studies, whereby we use a simpler
model. We have chosen the bending stiffness of the
bonds in such a way that themicroscopicPoisson’s
constant for the matrix isν = 0.3.

We have studied the effect of system width on
stress transfer to determine appropriate system di-

mensions for the simulations (Fig. 1). In the figure,
the curveLp= 20 corresponds to the system width
used by Termonia [13]. The results differ (albeit only
slightly) from the “infinite system width” limit ones at
δ= Ef/Ebg= 8; the largest stiffness of the fibre used
in Termonia’s work wasδ = 20. Direct comparison
between different types of models is beyond the scope
of this article, but we note the previous fact to illustrate
the situation specific to our model. In finite element
models for shear stress transfer, the simulated system
often consists of a cylindrical region of matrix around
the fibre. In these models, the radius of the cylinder is
sometimes only twice that of the matrix, althoughδ≈ 6
[17, 18]. To attain results independent of lattice size, we
chose to use a lattice of sizeL3 with L = 80 (the max-
imum fibre length used wasl f = 32×a, wherea is the
lattice spacing).

The lattice is strained by uniaxial elongation in the
[1 0 0] direction, and has periodic boundary conditions
in the [0 1 0] and [0 0 1] directions. The fibre was mod-
elled as having width,wf , and length,l f (both multiples
a), and being located at the centre of the simulation vol-
ume oriented either in the [1 0 0] direction or at an angle
of π/4 in the plane spanned by the [1 0 0] and [0 1 0]
directions (see Fig. 2). The valuesl f = 4− 32×a, and
wf =a and 2a were used for fibres parallel to exter-
nal strain. For tilted fibres, the projection of the fibre
length in the direction of the external strain,l x

f , and the
projection of fibre width,wx

f , were varied within the
same limits. The width of the fibre is an effective one,
i.e. for a one-dimensional sequence of bondswf =a.
The elastic modulus of the fibre (with respect to that of
the matrix) is determined by the elastic constants of the
beams constituting the fibre (matrix). The elastic mod-
ulus of the matrix isEbg= 1, whereas for the fibres the
corresponding quantity isEf .

An external strain of the magnitudeεx = 0.01 was
imposed on the system. The actual magnitude of the
strain is irrelevant as we use small strain theory, i.e. lin-
ear elasticity. The mechanical equilibrium of the sys-
tem was solved with a simple sequential over-relaxation
technique. This method is deemed sufficient because
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the system does not contain disorder whereby conver-
gence is quick and there is no need to do an ensemble
average over disorder. The scan of the entire parameter
range forL = 80 on a Sun SPARCstation took a few
hours of computer processing time.

Figure 2 A schematic of the two-dimensional discrete representation of
a tilted fibre at an angle ofπ/4. The projected width,wx

f = 4a.

Figure 3 Pressure field in ax−y-directional slice through the system at
z= L/2 with L = 40, l f =8a andwf = 2a. The elastic modulus of the
fibre Ef = 2Ebg.

(a) (b)

Figure 4 (a) Log–log plot of matrix pressure at the ends of the fibre (α× pbg) as a function ofδ: (——) l f = 4a; (---) l f = 8a; (· · ·) l f = 16a;
(·-·-·-) l f = 32a. Inset: the same quantity as a function ofl f for δ= 4 andwf = 2a. (b) The same quantity, but only the casesl f = 4a (¦) andl f = 32a
(+) plotted on a log-linear scale.wf = 2a in both cases. The upper line represents a best fit to pointsδ= 2− 8a.

Fig. 3 shows an example of the stresses in the system.
The physical quantity depicted isp.

In the figure, both the distribution of axial stresses
along a fibre as well as the pressure in the neighbouring
matrix points are clearly visible. The axial stress in the
fibre, σf , exhibits a typical form in which the stress
decays at the ends of the fibre and has a maximum at
the middle. The fibre shown in Fig. 3 is short,l f = 8a,
whereby it does not carry as much load as it could.
In traditional composite research parlance, the critical
fibre lengthlc> l f .

3. Discussion
3.1. Longitudinal fibres
In the first part of this section, we discuss the matrix
pressure and the shape of the stress field around a fibre.
In the following, we denote the magnitude of pressure
increase at fibre ends byα and decrease at the middle
of the fibre byβ. Data for the dependence of these
quantities of the ratio of the elastic moduli of the fibres
and the matrixδ, as well as fibre length and widthl f
andwf , are presented.

3.1.1. Matrix pressure
To obtain quantitative measures for pressure changes in
the matrix, we have studied one-dimensional cuts of the
pressure in the system near the fibre. The first such cut
is taken along the fibre axis, i.e. in the [1 0 0] direction,
and the second one perpendicular to the fibre in the
[0 1 0] direction at the middle of the system. Stresses at
the ends of the fibre increase as the ratioEf/Ebg grows,
indicative of axial stress transfer becoming more and
more important with stiffer fibres. Similarly, an increase
in fibre width yields higher stresses in the matrix.

In Fig. 4 the pressure at the fibre–matrix interface
is plotted. The quantity is made mesh independent by
measuring the pressure exactly at the node, which is
shared both by the fibre and the matrix. In general, the
pressure at fibre ends grows withl f until lc. After that,
the growth of the value slows down, being an indication
of possible pressure saturation. Forδ >1, the increase
in pressure becomes a non-linear function ofδ. The
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Figure 5 Effect of fibre width on pressure increase.l f = 32; curves cor-
respond to (bottom to top)δ= 2, 4 and 8.

relation between the pressure increase and the ratio of
elastic moduli is approximatelyα∝ δ0.35. This scaling
is roughly in accord with the results of Termonia [13].
For fibre lengths shorter than the critical value, the de-
pendence is approximately logarithmic.

The pressure increase in the matrix is slightly smaller
than that shown by finite difference modelling [13], and
is clearly lower than that obtained by the imaginary fibre
method [10]. The former fact may be caused either by
the small system width used by Termonia or be purely a
consequence of the difference between numerical mod-
els used.

The effect of increasing fibre width on pressureper
unit volumenext to the fibre end is negative (Fig. 5).
The general tendency is the same for all fibre lengths.

For perpendicular stress changes the effect of fibre
length is opposite to that seen at fibre ends: the longer
the fibre, the smaller the change. This follows simply
from the change in the pressure field of the fibre being
distributed over a larger area in the matrix when the fibre
is longer. The effects of fibre width, elastic modulus and
length are similar to those in Fig. 4. The largest pressure
reductions in our simulations are roughly 25%, whereas
the largest increases at fibre ends are in excess of 100%
for l f = 32×a andEf = 8× Ebg.

3.1.2. Far field of the fibre
In what follows, we study the far field due to the fibre.
On the basis of the results presented, one expects the
model to reflect both pressure increase next to the fi-
bre ends and pressure decrease towards the middle of
the fibre. Furthermore, the results are compatible with
dipole-like decay of the pressure field. From these pre-
liminary observations, a simple Ansatz of the form

p(x) = c(l f, wf, δ)
∫

3
|p0× r |2− 1

|x− x′|4 − d(l f, wf )

|x− x′|3 dx′

(4)

may be constructed, which indeed produces promis-
ing results (Fig. 6). Above, the constants c(l f, wf, δ)
and d(l f, wf ) include the explicit dependence on these
quantities;p0 is a unit vector in the direction of the ex-
ternal strain and d is a constant. Also for perpendicular

Figure 6 Pressure in the matrix in the vicinity of the fibre end. Shown is
pressure along a line oriented in the direction of the fibre axis and located
at the middle of the lattice (see inset). Points represent numerical results
and lines the predictions given by Equation 4. (¤) δ= 8; (+) δ= 4; (¦)
δ= 2. In all cases,L = 80, l f = 32a andwf = 2a.

stresses (not shown here) the dipole form is accurate
within a few per cent. Please note that the scheme de-
scribed above only gives the approximate shape of the
stress field andl f , wf andδ-dependence must be taken
care of “by hand”. In summary, the dipole approxima-
tion for the fibre shape effect applies for fibres of zero
as well as finite width.

3.1.3. Stress transfer at the fibre–matrix
interface

In Fig. 7 we show the interfacial shear stresses between
the fibre and the matrix next to the fibre ends. The quan-
tity depicted isσxy, the shear stress in bonds perpendic-
ular to the fibre as obtained from the numerical model.
As can be expected, the interfacial stresses are in ac-
cord with the results for axial stress transfer at fibre
ends, i.e. they are not affected by the fibre length when
l f > lc. The magnitude ofσxy may be compared with the
trace ofσ depicted in Fig. 4, whereby it turns out that
axial stress transfer is much more important. Hence,
one may expect that decoupling of the fibre takes place
at the fibre ends first.

The relation between the magnitude of shear stress
transfer and the ratio of elastic moduli is approximately

Figure 7 Interfacial shear stresses,σxy, between the fibre and the matrix.
wf =a; lines from top to bottom correspond toδ= 8, 4 and 2.

900



linear, whereas in previous results [13] the interfacial
shear stresses grow more slowly withδ. The discrep-
ancy is probably due to the small system width used in
the previous work.

3.1.4. Stresses in the fibre
As mentioned in the Section 1, the distribution of axial
stresses,σf , in a fibre embedded in a matrix has been
studied experimentally and found for low strains and
perfect adhesion at the interphase boundary to conform
well to the cosh-form given by the shear-lag theory [5].
Related numerical studies have been done with random
fibre networks, the elastic properties of which have been
modelled with shear-lag-type approaches [5], which,
however, appear to overestimate the elastic modulus
[8]. The cosh-form forσf (x) was found to be obeyed
for fibres oriented in the direction of external strain
[8, 24, 25]. Moreover, in reinforced fibre networks, i.e.
networks in which a low volume fraction of fibres with
high elastic modulus are placed into a random fibre
network, the maximum ofσ (x) is proportional to the
ratio of elastic moduli of the fibre and the background
[25].

In the following we study the maximum stress in the
fibre as well as the shape of the axial stress distribution.
Fig. 8 shows the shape of the axial stress along the fibre

Figure 8 Axial stresses in the fibre forwf = 2a andl f = 32a. The three
lines are, from top to bottom,Ef = 8, 4 and 2Ebg.

(a) (b)

Figure 9 Maximum axial stress in the fibre as a function of the ratio of the elastic moduli of the fibre and the background.wf =a (a) and 2a (b). The
four curves presented correspond tol f = 4a (+), 8a (×), 16a (* ) and 32a (¤). Straight lines correspond to linearσmax

f (δ)-relation.

axis. The shortening of the flat stress maximum in the
fibre with increasingδ for constantl f is clearly visible.
This, of course, corresponds to growth oflc with δ. Most
theoretical approaches yield the relation

lc∝ (δ)1/2 (5)

(for a review, see [6]), but some numerical simulations
suggest a linear dependence instead [11, 13]. We have
not studied the dependence oflc onδ systematically, but
our data are consistent with Equation 5. In determining
lc, the criterion forσf to attain the maximum value was
chosen to be 97% ofEfεx.

Next, we embark on a study of the magnitude of the
maximum ofσ (x). For a solitary fibre in a matrix, the
maximum has the limiting value ofEfεx, but falls below
this “ideal limit” for short fibres. Fig. 9 shows that for
Ef ≤ Ebg,σmax

f andδ are approximately linearly related.
This is also a good approximation for stresses in fibres
longer thanlc. Whenl f < lc and the elastic modulus of
the fibre is higher than that of the matrix, the relation

σmax
f ∝ ln

Ef

Ebg
(6)

applies approximately. Thus the logarithmic depen-
dence of the pressure increase,α, on the ratio of the
moduli can be related to the behaviour of the maximum
axial stress of the fibre. Moreover, the same functional
dependence was observed for the maximum stress in
reinforcement fibres in fibrous networks [25], whereby
it can be deduced that in that case the length of the fi-
bre was below the critical one. Below we discuss the
reasons for the observedσmax

f (δ) dependence for fibres
shorter than the critical length.

Let us have a look at the prediction of the shear-
lag theory [5], which–apart from axial stress transfer
at fibre ends–is a good model for the axial stress in
the fibres at the dilute limit [23]. From Equations 1
and 2 one can obtain predictions for dependence of the
magnitude ofσmax

f (x) on δ as

σmax
f ∝ δ

[
1− c1

cosh 1/(δ)1/2

]
(7)

where c1 is a constant.
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The above equation turns out to be inadequate for
giving a full account of the type of relation given in
Equation 6. The reason for this is, simply, axial stress
transfer takes place at the ends of the fibre, giving rise
to deviation ofσf from the cosh-form and changing
the value ofσmax

f . Because the axial stress transfer in-
creases with both increasingδ and increasingl f (the
latter up tolc, Fig. 4), the effect of axial stress transfer
at fibre ends on axial fibre stress is non-trivial.

A simple argument will be presented, which is ba-
sically similar to the one used by Hsueh [9], to ex-
tend the shear-lag theory to include axial stress transfer.
Our crucial ingredient is the knowledge of the depen-
dence of pressure increase,α, onδ. Let us assume that
l f < lc, whereby the theoretical maximum stress is not
attained, i.e. the expression in parentheses in Equation 7
is smaller than unity. The axial stress transferred to the
fibre from the matrix is approximately proportional to
the logarithm of the ratio of the elastic moduli (Fig. 4),
or σax∝ ln δ. The axial stress in the fibre can be mod-
elled as being of cosh-form-type added toσax. Thus
one may write

σmax
f ∝

{
(Eεx − φ ln δ)

[
1− c1

cosh 1/(δ)1/2

]
+φ ln δ

}
= Eεx

[
1− c1

cosh 1/(δ)1/2

]
+ φ ln δ

cosh 1/(δ)1/2
(8)

whereφ is a constant determining the importance of ax-
ial stress transfer. Please observe that forl f < lc, σmax

f
can be larger when axial stress transfer takes place.
The latter term in Equation 8 grows in importance with
increasingφ, and provides an explanation for the de-
pendence ofσmax

f of the type of Equation 6.
Summarizing the current section, the maximum axial

stress in the fibre,σmax
f , for fibre lengths shorter than

the critical value is not given correctly by pure shear-
lag theory. By using the knowledge presented in Sec-
tion 3.1.3. that axial stress transfer has approximately
a logarithmic dependence on the ratio,δ, of the elas-
tic moduli of the fibre and the background, an axial
stress transfer term can be incorporated in the shear-lag
model in a simple way. With this addition, we obtain a
qualitatively correct relation betweenσmax

f andδ.

3.1.5. Grid size dependence of results
We tested the dependence of the results on the grid size
by comparing l f = 16a/L = 80 with l f = 8a/L = 40
(wf = 2a). In the tests, all thex-co-ordinate values from
the former results were divided by two in order to ob-
tain a comparison between a “basic” case and one in
which the linear size of the mesh was two times that
of the basic case. The largest difference was found in
the maximum axial stress, which was 9% lower for the
coarser grid. (For other parameter values the difference
was within 2%.) Matrix stresses next to the fibre, on the
other hand, were the same in both cases, within 2%.

3.2. Tilted fibres
In this section we study fibres that are not oriented in the
direction of external strain. Due to limitations imposed

Figure 10 Pressure in the matrix and in the fibre tilted at an angle of
π/4 with respect to the external strain.L = 40, l x

f = 16×a,wx
f = 4×a

andδ= 2.

Figure 11 Change in matrix pressure in the vicinity of the fibre as func-
tion of δ. Shown are data forl x

f = 4a, 8a, 16a andl f = 32a. wx
f = 4a in

all cases. Both pressure increase (M) and pressure decrease (¤) (those
displaying a deviation from the general tendency of data) correspond to
l x
f = 4a. (* ) l x

f = 8a.

by discrete cubic lattice representation of fibres, we
limit ourselves to studying fibres at an angle ofπ/4
with respect to the external strain. For the same reasons
we only study fibres withwf > 3a. A dramatic example
of pressure field changes is shown in Fig. 10; please
note especially the asymmetry of changes with respect
to the fibre axis in the vicinity of the fibre. The quantity
l x
f is the projection of the fibre length in the direction

of external strain, i.e.l x
f = l f/(2)1/2. A corresponding

definition applies towx
f .

Fig. 11 shows the magnitude of the pressure changes
next to fibre ends as a function of the ratio of the elastic
moduli,δ. The first observation is that for long enough
fibres the magnitude of pressure changes does not de-
pend on fibre length. Second, the increase of pressure
next to the fibre end,α1 p, and corresponding reduction,
α2 p, are roughly speaking “logarithmically symmetric”
especially for small values ofδ, i.e. α1α2= c(δ)≈ 1.
The values for c are 1.07, 1.16 and 1.28 forδ= 2, 4 and
8, respectively. The values do not depend onl f , with the
exception of the last value being 1.2 forl f = 4a.

To complete the current account of the oblique fibre
case, Fig. 12 shows the dependence of pressure decrease
next to fibre ends as a function of fibre width. We show
only the case ofl x

f = 32a, but the fibre length turns out
not to affect the results. In the curves, afterwx

f = 2a
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Figure 12 Decrease in matrix pressure next to the fibre ends as a function
of wx

f . L = 80, l x
f = 32a. The three curves are, top to bottom,δ= 2, 4

and 8.

a sudden drop is seen, but after that the behaviour is
approximately linear. The change may be related to
discretation of the fibre in the oblique case: for a fibre
with wx

f = 2a the local bending stiffness varies more
than for e.g.wx

f = 3a. This can be seen clearly from
the fact that the pressure changes are identical forδ= 2
andδ= 4 for the narrowest width tested.

(a) (b)

Figure 13 Height of the pressure increases next to the break in the fibre: (a)δ= 2, and (b)δ= 8. The different curves correspond towf = 1, 2, 3 and
4×a in the order of increasing pressure. Please note the difference in the vertical scales of the two plots.

(a) (b)

Figure 14 As Fig. 13, but for an oblique fibre. The fibre width and length are projected values.

3.3. Effect of fibre breaking
Next we study the effect of breaking of the fibre. This is
a subject that clearly has interest from the experimen-
tal point of view: how are large stress enhancements
created next to the breaking points?

The systems studied are exactly as before, except
that we set the elastic moduli of the bonds at the middle
of the fibre equal to zero. This gives rise to pressure
increases in the matrix next to the weak point. In the
following, we estimate these effects both for longitudi-
nal and oblique orientations of the fibre with respect to
external strain.

3.3.1. Longitudinal fibres
According to the numerical data, the length of the fibre
has only a relatively weak effect on pressure increase
next to the breaking point (Fig. 13). When the ratio of
the elastic moduli is larger, however, increasing fibre
length produces clearly larger stress enhancements next
to the damaged point. In addition, for short fibresδ has
little effect on the magnitude of the pressure increases.
With “large” values ofl f , the difference becomes ob-
vious. The conclusion to be drawn from these facts is
quite simply that for fibres shorter than 2× lc, break-
ing of the fibres does not have as drastic an effect on
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the matrix pressure state as for longer fibres. On a more
non-trivial note, it is seen that the pressure increase does
notsaturate, although the lengths of the fibre halves ex-
ceed the critical value. Furthermore, comparison of the
data with Fig. 4 reveals that the magnitude of pressure
increases next to the breaking point is larger than that
next to the fibre ends for smallδ, i.e. for l fÀ lc. If the
fibre is shorter than the critical length, however, the
largest stresses take place at the ends of the fibre even
in the case of fibre breaking.

3.3.2. Oblique fibres
The fracture in an oblique fibre was realized by effec-
tively removing bonds belonging to the fibre atx= L/2
in a plane perpendicular to the external strain. The re-
sults for pressure increases next to the fracturing point
are similar to those presented above for a fibre oriented
parallel to the external strain (Fig. 14). Notably, how-
ever, the magnitude of the increases in the pressure are
smaller, especially for narrower fibres. This can be at-
tributed to shear stresses, which tend to straighten the
two halves of the fibre being distributed on an area,
which is large in comparison with the almost point-like
pressure “hot spot” seen in the breaking of a longi-
tudinal fibre. Moreover, for a short fibre, the pressure
increases next to the breaking point are smaller for an
oblique fibre than for one oriented in the direction of
the external strain. For longer fibres, on the other hand,
tilting of the fibre does not have much effect.

4. Conclusions
The stress transfer between a solitary fibre and an elastic
matrix was studied numerically. We parameterize the
stress transfer using the length and the width of the fibre,
as well asδ, the ratio of the elastic moduli of the fibre
and the background. For fibre lengths,l f , shorter than
the critical one,lc, it is observed that axial stress transfer
at fibre ends shows a behaviour that is consistent with
a logarithmic dependence onδ.

For fibres shorter than the critical length, the depen-
dence of maximum axial stress of a fibre on the ratio of
the elastic moduli is not linear. A purely shear-lag-type
model can not account for this relation due to axial
stress transfer at fibre ends. The addition of an axial
stress transfer term proportional to lnδ yields qualita-
tively correct behaviour. The far field of the fibre can
be well modelled with dipole form, also for fibres with
non-vanishing width.

The results are based on a model in which adhesion
both along the fibre and at fibre ends is perfect and
no debonding takes place during loading. If there is
debonding at the ends of the fibre, the critical length in-
creases [26] and obviously also axial stress concentra-
tions next to the fibre ends decrease. Interfacial debond-
ing along the length axis of the fibre diminishes stress
transfer between the fibre and the matrix, thereby caus-
ing the fibre to have less effect on the stress state of the
matrix.

Study of the breaking of a fibre into two parts of equal
length shows that the pressure increase in the matrix

next to the damaged point in the fibre is larger than
pressure change at the ends of the unbroken fibre when
the ratio of the elastic moduli,δ, is small. Tilting of the
fibre plays down pressure increases for short fibres, but
not for long ones.

The results for the shape of the stress fields of fi-
bres will be applied to the study of the effect of texture
on the mechanical properties of short-fibre reinforced
composites in a forthcoming publication. Possible in-
teresting future directions also include study of inter-
face delamination for a fibre at an angle with respect to
the external strain.

Acknowledgements
VIR thanks the Finnish Cultural Foundation and the
Academy of Finland for financial support. The authors
wish to express their gratitude to the participants of the
SFB 381 programme for interesting discussions and
comments.

References
1. Z . H A S H I N , J. Appl. Mech. 50 (1983) 481.
2. W. A . C U R T I N, Phys. Rev. Lett. 80 (1998) 1445.
3. M . I B N A B D E L J A L I L and W. A . C U R T I N, Int. J. Solids

Struct. 34 (1997) 2649.
4. S. J. Z H O U andW. A . C U R T I N, Acta Metall. Mater. 43(1995)

3093.
5. H. L . C O X, Brit. J. Appl. Phys. 3 (1952) 72.
6. I . M . R O B I N S O N andJ. M . R O B I N S O N, J. Mater. Sci. 29

(1994) 4663.
7. L . M O N E T T E, M . P. A N D E R S O N andG. S. G R E S T, J.

Appl. Phys. 75 (1994) 1155.
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