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Numerical calculations for stress transfer between a single fibre and a surrounding
three-dimensional elastic medium are presented. We study systematically the effect of fibre
parameters on stress transfer between the fibre and the matrix. We pay special

attention to fibres at an oblique angle with respect to the external strain, as well as to the
case of a fibre breaking into two parts of equal size at the middle. According to the
simulations, for a small ratio of elastic moduli of the fibre and the matrix, § = E¢/Epg, the
largest stresses are seen near the breaking point of the fibre for the latter case. For short
fibres, § has little effect on pressure increase next to the breaking point. This is due to the
fibres being shorter than the critical length. For such short fibres, the numerical results for
the maximal axial stress are in agreement with a logarithmic dependence on §. © 7999
Kluwer Academic Publishers

1. Introduction Above, G, is the shear modulus of the matrik; is
The elastic properties of long-fibre reinforced com-the elastic modulus of the fibres apds a geometrical
posites are well understood theoretically [1]. More re-factor dependent on the placement of fibres and volume
cently, the effect of fibre fracture in long-fibre compos- fraction (i.e. the number of fibres) thereof.
ites has been studied with numerical simulations using When strains are large enough to give rise to rupture
Green’s lattice functions method [2—4]. From a techno-n the fibre—matrix interface, the predictive power of the
logical viewpoint, however, the use of long fibres is notshear-lag model is weakened considerably. Interactions
a cost-effective way of reinforcing materials. Subse-between the stress fields of individual fibres render the
guently, the micromechanics of composites consistingffective medium approximation-type theories insuffi-
of either a random or textured placement of short fi-cient for use in predicting the mechanical properties of
bres embedded in a matrix is an active field of researchcomposites where the volume fraction of fibres is high.
Often the mechanical properties of composites are calh addition, axial stress transfer—not accounted for by
culated by studying stress transfer between a fibre antiie original shear-lag theory—has been shown to take
the matrix. From the physics point of view, thitress  place near fibre ends [7, 8]. Recently, extensions to the
transfer analysiseflects the fact that at different loca- shear-lag theory have been proposed, which also take
tions in the fibre—matrix interface, a varying amount ofinto account axial stress transfer [9, 10].
stress is transferred to the fibre from the matrix. As an The mechanics of a system consisting of a matrix
example of stress transfer thinking, Cox’s [5] so-calledand of single fibres aligned in the direction of exter-
shear-lag model appears to be a good way of predictingal strain have previously been studied numerically us-
the mechanical properties of composites for low straingng discrete representation of the elastic problem [7,
and small volume fractions of fibres [6]. 11-16]. In addition, finite element modelling of the im-
The shear-lag theory yields the following prediction mediate surroundings of a fibre has been used, e.g. to
for axial stress in the fibre as a function of the axialaddress interfacial stresses [17, 18]. Simulations have

co-ordinateg(X) been employed to study subjects like elastic modulus
of the composite [11, 12] and stress transfer between

o1(X) = Eéy (1 . COSth/wf> 1 the matrix and the fibres [7,11-13]. A major motiva-
coshgls/wy tion in the study of systems consisting of a single fibre

in a matrix has been the applicability of shear-lag-type
' models and the study of the dependence of the critical
length on the ratio of the elastic moduli of the fibre and

Above |; andws are the length and the width of the fibre
the axial coordinate € [—l;/2, I1/2] and the constant

gis given by the matrix. (The critical length is essentially the length
oG\ 1/2 of that part of the fibre that does not carry full load [6].)
= <_m> (2) Previously cited results have been presented for fibres
Ery that are longer than the critical length.
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Figure 1 (a) Dependence of stresses in the matrix in a cut taken along the length of the fibre. (b) The perpendicular stresses at the edge of the system
(<) and next to the fibre). In both cases, the ratio of the elastic modulus of the fibre and the nfaitE,y = 8 and the length of the system in the
x-direction isLx = 80. In (b), the width of the system is given in unitslof. Please note that in this figure, the external strain: 0.035, has been

applied instead of the smaller value used later.

In this work we present results for changes in themensions for the simulations (Fig. 1). In the figure,
stress field of a matrix around a single fibre with perfectthe curvel,=20 corresponds to the system width
bonding between the fibre and the matrix. The stressised by Termonia [13]. The results differ (albeit only
state of the matrix is modelled using pressyrelech-  slightly) from the “infinite system width” limit ones at
nically, pressure is defined as the first invariant of thes = E;/Epg=8; the largest stiffness of the fibre used

stress tensoff, or in Termonia’s work was$ = 20. Direct comparison
1 1 between different types of models is beyond the scope
p= éTrT = é(al + 02+ 03) (3)  ofthis article, but we note the previous fact to illustrate

the situation specific to our model. In finite element
in the principal stress co-ordinates. In the following, models for shear stress transfer, the simulated system
we use the variableg = 3p’ (i.e. total pressure) as often consists of a cylindrical region of matrix around
a convenient scalar measure to characterize the strei®e fibre. In these models, the radius of the cylinder is
state of the matrix. sometimes only twice that of the matrix, althouiylsy 6

In Section 2, the numerical models used are prefl7, 18]. To attain results independent of lattice size, we
sented. The results of the simulations for fibres in thechose to use a lattice of sit€ with L = 80 (the max-
direction of external strain are shown in Section 3.1.imum fibre length used wds= 32 x a, wherea is the
and those for fibres at an oblique angle in Section 3.2lattice spacing).
A subject of interest with respect to experiments, we The lattice is strained by uniaxial elongation in the
study the effect of fibre breaking in Section 3.3. Our[10 0] direction, and has periodic boundary conditions

conclusions are drawn together in Section 4. inthe [010] and [0 0 1] directions. The fibre was mod-
elled as having widthys, and lengthl; (both multiples
2. Numerical model a), and being located at the centre of the simulation vol-

For numerical simulations we have used a linearizedime oriented either inthe [1 0 O] direction or at an angle
bond bending network in three dimensions. The netof 7/4 in the plane spanned by the [100] and [0 1 0]
work consists of a simple cubic arrangement of bondglirections (see Fig. 2). The valuks=4— 32 x a, and
in aregular lattice. The bonds have bending stiffness invy =a and 2 were used for fibres parallel to exter-
additionto spring stiffness. The discretation scheme canal strain. For tilted fibres, the projection of the fibre
be viewed as a coarse-grained representation of the miength in the direction of the external stralify, and the
cromechanics of a solid material on large length scaleprojection of fibre widthwy, were varied within the
[19]. We chose to use bond bending because the springame limits. The width of the fibre is an effective one,
model (vanishing bending stiffness) suffers from thei.e. for a one-dimensional sequence of bonds-a.
drawback that its Poisson’s constant is zero [7—20], and he elastic modulus of the fibre (with respect to that of
the shear modulus vanishes for a non-perturbed hypethe matrix) is determined by the elastic constants of the
cubic lattice [19]. Another alternative, the beam model,beams constituting the fibre (matrix). The elastic mod-
is a discretation of Cosserat-type elasticity [21, 22].ulus of the matrix isEp,g= 1, whereas for the fibres the
However, we need not consider local rotational degreesorresponding quantity i&.
of freedom in our studies, whereby we use a simpler An external strain of the magnitudg = 0.01 was
model. We have chosen the bending stiffness of thémposed on the system. The actual magnitude of the
bonds in such a way that thaicroscopicPoisson’s strain is irrelevant as we use small strain theory, i.e. lin-
constant for the matrix is = 0.3. ear elasticity. The mechanical equilibrium of the sys-
We have studied the effect of system width ontemwas solved with a simple sequential over-relaxation
stress transfer to determine appropriate system ditechnique. This method is deemed sufficient because
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the system does not contain disorder whereby conver- Fig. 3 shows an example of the stresses in the system.
gence is quick and there is no need to do an ensemblehe physical quantity depicted s

average over disorder. The scan of the entire parameter In the figure, both the distribution of axial stresses
range forL =80 on a Sun SPARCstation took a few along a fibre as well as the pressure in the neighbouring

hours of computer processing time. matrix points are clearly visible. The axial stress in the
fibre, of, exhibits a typical form in which the stress
IRRRERRE RERRREER NEEEEER R R, decays at the ends of the fibre and has a maximum at

the middle. The fibre shown in Fig. 3 is shdft=8a,

: - : : : whereby it does not carry as much load as it could.
e e T o ; In traditional composite research parlance, the critical
: : : : fibre lengthl¢ > |;.

3. Discussion

3.1. Longitudinal fibres

In the first part of this section, we discuss the matrix
pressure and the shape of the stress field around a fibre.
In the following, we denote the magnitude of pressure
increase at fibre ends layand decrease at the middle

of the fibre bys. Data for the dependence of these
guantities of the ratio of the elastic moduli of the fibres
and the matrixs, as well as fibre length and width
andwys, are presented.

.................

,,,,,,, e e el 3.1.1. Matrix pressure

To obtain quantitative measures for pressure changes in
Figure 2 A schematic of the two-dimensional discrete representation ofthe matrix, we have studied one-dimensional cuts of the
atilted fibre at an angle of /4. The projected widthyf = 4. pressure in the system near the fibre. The first such cut
is taken along the fibre axis, i.e. in the [1 0 O] direction,
and the second one perpendicular to the fibre in the
[01 0] direction at the middle of the system. Stresses at
the ends of the fibre increase as the r&ipEpg grows,
indicative of axial stress transfer becoming more and
more important with stiffer fibres. Similarly, anincrease
in fibre width yields higher stresses in the matrix.

In Fig. 4 the pressure at the fibre—matrix interface
is plotted. The quantity is made mesh independent by
measuring the pressure exactly at the node, which is
shared both by the fibre and the matrix. In general, the
400 pressure at fibre ends grows withuntil |. After that,
Figure 3 Pressure field in a—y-directional slice through the system at the grOV_Vth of the value S|OWS-dOWH, being an indication
z=L/2 with L =40, |; =8a and w; = 2a. The elastic modulus of the Of possible pressure saturation. Bor 1, the increase
fibre E = 2Epg. in pressure becomes a non-linear functionsofThe

pressure
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Figure 4 (a) Log—log plot of matrix pressure at the ends of the filare<(ppg) as a function ofs: (——) s =4a; (---) lf=8a; (---) I =16a;
(----+-) lf = 32a. Inset: the same quantity as a functioniydfor § = 4 andws = 2a. (b) The same quantity, but only the cates 4a (<) andl; =32a
(+) plotted on a log-linear scale;s = 2a in both cases. The upper line represents a best fit to pbiatd— 8a.
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Figure 6 Pressure in the matrix in the vicinity of the fibre end. Shown is
pressure along a line oriented in the direction of the fibre axis and located
at the middle of the lattice (see inset). Points represent numerical results
and lines the predictions given by Equation@) § =8; (+) § =4; (<)
§ =2.Inall caseslL =80,l; =32a andws = 2a.
relation between the pressure increase and the ratio of
elastic moduli is approximately oc §°°. This scaling  stresses (not shown here) the dipole form is accurate
is roughly in accord with the results of Termonia [13]. \yithin a few per cent. Please note that the scheme de-
For fibre lengths shorter than the critical value, the dexcrihed above only gives the approximate shape of the
pendence is approximately logarithmic. stress field antt, wy and§-dependence must be taken
The pressure increase in the matrix is slightly smaller. e of “by hand”. In summary, the dipole approxima-
than that shown by finite difference modelling [13], and tjon for the fibre shape effect applies for fibres of zero
is clearly lower than that obtained by the imaginary fibre;5 well as finite width.
method [10]. The former fact may be caused either by
the small system width used by Termonia or be purely a
consequence of the difference between numerical mod3, 7.3. Stress transfer at the fibre—-matrix
els used. interface
The effect of increasing fibre width on pressper  |In Fig. 7 we show the interfacial shear stresses between
unit volumenext to the fibre end is negative (Fig. 5). the fibre and the matrix next to the fibre ends. The quan-
The general tendency is the same for all fibre lengths tity depicted issxy, the shear stress in bonds perpendic-
For perpendicular stress changes the effect of fibrelar to the fibre as obtained from the numerical model.
length is opposite to that seen at fibre ends: the longess can be expected, the interfacial stresses are in ac-
the fibre, the smaller the change. This follows simplycord with the results for axial stress transfer at fibre
from the change in the pressure field of the fibre beingnds, i.e. they are not affected by the fibre length when
distributed over alarger areain the matrixwhenthe fibré; > .. The magnitude afy, may be compared with the
is longer. The effects of fibre width, elastic modulus andtrace ofo depicted in Fig. 4, whereby it turns out that
length are similar to those in Fig. 4. The largest pressur@xial stress transfer is much more important. Hence,
reductions in our simulations are roughly 25%, whereasne may expect that decoupling of the fibre takes place
the largest increases at fibre ends are in excess of 100% the fibre ends first.
forlf=32x aandEs =8 x Epg. The relation between the magnitude of shear stress
transfer and the ratio of elastic moduli is approximately

Figure 5 Effect of fibre width on pressure increase= 32; curves cor-
respond to (bottom to top)= 2, 4 and 8.

3.1.2. Far field of the fibre

In what follows, we study the far field due to the fibre.
On the basis of the results presented, one expects tt o005t e .
model to reflect both pressure increase next to the fi e B

bre ends and pressure decrease towards the middle s

the fibre. Furthermore, the results are compatible with
dipole-like decay of the pressure field. From these pre-
liminary observations, a simple Ansatz of the form

0.002 t

Shear stress

|poxr2—1 d(s, wr) .,
T dx
X —X/| X —Xx/|3

P00 = el wr.d) | 3
4)
may be constructed, which indeed produces promis. 0001t 1
ing results (Fig. 6). Above, the constants;cgs, 8) 4 8 16 32
and d{s, ws) include the explicit dependence on these Length of the fibre

quantities;'po isa Ur_‘it vector in the direction of the_ex' Figure 7 Interfacial shear stresses,, between the fibre and the matrix.
ternal strain and d is a constant. Also for perpendiculagu = a; lines from top to bottom correspondde= 8, 4 and 2.
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linear, whereas in previous results [13] the interfacialaxis. The shortening of the flat stress maximum in the
shear stresses grow more slowly wlthThe discrep- fibre with increasing for constant; is clearly visible.
ancy is probably due to the small system width used irThis, of course, corresponds to growthokith §. Most

the previous work. theoretical approaches yield the relation

le o< (8)2 (5)

3.1.4. Stresses in the fibre
As mentioned in the Section 1, the distribution of axial (for a review, see [6]), but some numerical simulations
stressesgs, in a fibre embedded in a matrix has beensuggest a linear dependence instead [11, 13]. We have
studied experimentally and found for low strains andnot studied the dependencdobns systematically, but
perfect adhesion at the interphase boundary to conformur data are consistent with Equation 5. In determining
well to the cosh-form given by the shear-lag theory [5].1c, the criterion foro; to attain the maximum value was
Related numerical studies have been done with rando®hosen to be 97% drey.

fibre networks, the elastic properties of which have been Next, we embark on a study of the magnitude of the
modelled with shear-lag-type approaches [5], whichmaximum ofo (x). For a solitary fibre in a matrix, the
however, appear to overestimate the elastic modulug'aximum has the limiting value e, but falls below

[8]. The cosh-form for¢(x) was found to be obeyed this “ideal limit” for short fibres. Fig. 9 shows that for
for fibres oriented in the direction of external strain Et < Epg, of"®*ands are approximately linearly related.
[8, 24, 25]. Moreover, in reinforced fibre networks, i.e. This is also a good approximation for stresses in fibres
networks in which a low volume fraction of fibres with longer thari.. Whenls < | and the elastic modulus of
high elastic modulus are placed into a random fibrghe fibre is higher than that of the matrix, the relation
network, the maximum of (x) is proportional to the E
ratio of elastic moduli of the fibre and the background of "o In—"
[25]. Ebg
_ Inthe following we study the maximum stress in the 55 pjies anproximately. Thus the logarithmic depen-
fibre as well as the shape of the axial stress distributionyance of the pressure increase,on the ratio of the

Fig. 8 shows the shape of the axial stress along the fibrg, o 4ii can be related to the behaviour of the maximum

axial stress of the fibre. Moreover, the same functional
0.1 : . , dependence was observed for the maximum stress in

(6)

__________________ reinforcement fibres in fibrous networks [25], whereby
it can be deduced that in that case the length of the fi-
bre was below the critical one. Below we discuss the
005 ¢ 1 reasons for the observed'®(s) dependence for fibres
Z P shorter than the critical length.
8 ' Let us have a look at the prediction of the shear-
g lag theory [5], which—apart from axial stress transfer
< sl at fibre ends—is a good model for the axial stress in
the fibres at the dilute limit [23]. From Equations 1
and 2 one can obtain predictions for dependence of the
magnitude ob{"®{(x) oné as
0.01
20 40 | 60 80 C1
X coordinate oMX e sl1— ———— 7
f cosh J/(8)1/2 0
Figure 8 Axial stresses in the fibre fap; = 2a andl; = 32a. The three )
lines are, from top to bottonEs =8, 4 and Epg. where g is a constant.
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Figure 9 Maximum axial stress in the fibre as a function of the ratio of the elastic moduli of the fibre and the backgrosrad(a) and 2 (b). The
four curves presented correspondste: 4a (+), 8a (x), 16a (+) and 32 (O). Straight lines correspond to lineaf"®{(5)-relation.
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The above equation turns out to be inadequate fo Pressure
giving a full account of the type of relation given in 4
Equation 6. The reason for this is, simply, axial stress
transfer takes place at the ends of the fibre, giving rise
to deviation ofo; from the cosh-form and changing
the value ofo;"®. Because the axial stress transfer in-
creases with both increasirdgand increasind; (the ~ 0.009}
latter up tol, Fig. 4), the effect of axial stress transfer
at fibre ends on axial fibre stress is non-trivial.

A simple argument will be presented, which is ba-
sically similar to the one used by Hsueh [9], to ex-
tend the shear-lag theory to include axial stress transfe.
Our crucial ingredient is the knowledge of the depen'Figure 10 Pressure in the matrix and in the fibre tilted at an angle of
dence of pressure increasg,0nd. Let us assume that /4 with respect to the external strain=40,1X =16 x a, wf =4 x a
I+ < I, whereby the theoretical maximum stress is notands =2.
attained, i.e. the expression in parentheses in Equation 7
is smaller than unity. The axial stress transferred to the 0018
fibre from the matrix is approximately proportional to
the logarithm of the ratio of the elastic moduli (Fig. 4),
or oax < In 8. The axial stress in the fibre can be mod- g4}
elled as being of cosh-form-type addeddg. Thus -
one may write

max C1

= il ¢ In3 l\M
N Eex[l_ cosh 11(3)1/2] toshgpz © ooy ._______

whereg is a constant determining the importance of ax- - - - T0
ial stress transfer. Please observe thatderl., o/ Ratio of elastic moduli
can be larger when axial stress transfer takes plac%igure 11 Change in matrix pressure in the vicinity of the fibre as func-
The latter term in Equation 8 grows in importance with tion of 5. Shown are data fdi* = 4a, 8a, 16a andl; = 32a. wX =4ain
increasingyp, and provides an explanation for the de- all cases. Both pressure increas¢ énd pressure decrease) (those
pendence otf,fmax of the type of Equation 6. displaying a deviation from the general tendency of data) correspond to
Summarizing the current section, the maximum axialf =4 ()1 =8a
stress in the fibreg{™®, for fibre lengths shorter than
the critical value is not given correctly by pure shear-
lag theory. By using the knowledge presented in Sec
tion 3.1.3. that axial stress transfer has approximatel
a logarithmic dependence on the ratioof the elas-
tic moduli of the fibre and the background, an axia
stress transfer term can be incorporated in the shear-la
model in a simple way. With this addition, we obtain a
qualitatively correct relation betweed"® ands.

LR LIS
XL ATALRR
LRLREIEL

0011}

Pressure

by discrete cubic lattice representation of fibres, we
limit ourselves to studying fibres at an anglemf4

ith respect to the external strain. For the same reasons
jwe only study fibres withv; > 3a. A dramatic example
pressure field changes is shown in Fig. 10; please
te especially the asymmetry of changes with respect
to the fibre axis in the vicinity of the fibre. The quantity
¢ is the projection of the fibre length in the direction
of external strain, i.elX =1¢/(2)"/2. A corresponding
3.1.5. Grid size dependence of results definition applies tavy’.
We tested the dependence of the results on the grid size Fig. 11 shows the magnitude of the pressure changes
by comparingl;=16a/L =80 with |;=8a/L =40 nextto fibre ends as a function of the ratio of the elastic
(wt = 2a). Inthe tests, all the-co-ordinate values from moduli,é. The first observation is that for long enough
the former results were divided by two in order to ob-fibres the magnitude of pressure changes does not de-
tain a comparison between a “basic” case and one iRend on fibre length. Second, the increase of pressure
which the linear size of the mesh was two times thatextto the fibre endy, p, and corresponding reduction,
of the basic case. The largest difference was found itz P, are roughly speaking “logarithmically symmetric”
the maximum axial stress, which was 9% lower for the€specially for small values df, i.e. ayaz =c(8) ~ 1.
coarser grid. (For other parameter values the differenc&he values for c are 1.07, 1.16 and 1.28%ex 2, 4 and
was within 2%.) Matrix stresses next to the fibre, on theB, respectively. The values do not dependsowith the

other hand, were the same in both cases, within 2%. exception of the last value being 1.2 fpe=4a.
To complete the current account of the oblique fibre

case, Fig. 12 shows the dependence of pressure decrease
3.2. Tilted fibres next to fibre ends as a function of fibre width. We show
In this section we study fibres that are not oriented in thenly the case off = 32a, but the fibre length turns out
direction of external strain. Due to limitations imposednot to affect the results. In the curves, afigf =2a
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0.01 - ; - : 3.3. Effect of fibre breaking
Next we study the effect of breaking of the fibre. This is
a subject that clearly has interest from the experimen-
tal point of view: how are large stress enhancements
created next to the breaking points?
The systems studied are exactly as before, except
B that we set the elastic moduli of the bonds at the middle
0.008 - TR 1 of the fibre equal to zero. This gives rise to pressure
o increases in the matrix next to the weak point. In the
following, we estimate these effects both for longitudi-
0.007 - B 1 nal and oblique orientations of the fibre with respect to
external strain.

0.009 +

Pressure

3 ry
Width of the fib j j j
1dth of the fibre 3.3.1. Longitudinal fibres

Figure 12 Decrease in matrix pressure nextto the fibre ends as a functio\ccording to the numerical data, the length of the fibre
of w'. L =80,If =32a. The three curves are, top to bottoén=2, 4  has only a relatively weak effect on pressure increase
and 8. next to the breaking point (Fig. 13). When the ratio of

the elastic moduli is larger, however, increasing fibre
a sudden drop is seen, but after that the behaviour ikength produces clearly larger stress enhancements next
approximately linear. The change may be related tdo the damaged point. In addition, for short fibédsas
discretation of the fibre in the oblique case: for a fibrelittle effect on the magnitude of the pressure increases.
with w{ = 2a the local bending stiffness varies more With “large” values ofls, the difference becomes ob-
than for e.g.wy =3a. This can be seen clearly from vious. The conclusion to be drawn from these facts is
the fact that the pressure changes are identicdl¥o2 ~ quite simply that for fibres shorter than<d., break-

ands =4 for the narrowest width tested. ing of the fibres does not have as drastic an effect on
0.02 . | | | - l
..,«--"X
0.0175 } 0.025- :
002}
© 0015} e 5 8
2 g ,
3 --------- e mnnm T —+ S
| e T 2
Q-‘ - - 0.015}
00125} |
0.01 . . | | N | | I I
4 8 16 32 " - ) .
e Fibre length
@ .

Figure 13 Height of the pressure increases next to the break in the fibr& &) and (b)s = 8. The different curves correspondugp=1, 2, 3 and
4 x ain the order of increasing pressure. Please note the difference in the vertical scales of the two plots.

0.02 . . . . 003
00175y 0.0251
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Figure 14 As Fig. 13, but for an oblique fibre. The fibre width and length are projected values.
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the matrix pressure state as for longer fibres. On a moreext to the damaged point in the fibre is larger than
non-trivial note, itis seen that the pressure increase dogwgessure change at the ends of the unbroken fibre when
notsaturate, although the lengths of the fibre halves exthe ratio of the elastic modul, is small. Tilting of the
ceed the critical value. Furthermore, comparison of thdibre plays down pressure increases for short fibres, but
data with Fig. 4 reveals that the magnitude of pressur@ot for long ones.
increases next to the breaking point is larger than that The results for the shape of the stress fields of fi-
next to the fibre ends for smadl] i.e. forl; > 1. If the  bres will be applied to the study of the effect of texture
fibre is shorter than the critical length, however, theon the mechanical properties of short-fibre reinforced
largest stresses take place at the ends of the fibre eveomposites in a forthcoming publication. Possible in-
in the case of fibre breaking. teresting future directions also include study of inter-
face delamination for a fibre at an angle with respect to
the external strain.

3.3.2. Oblique fibres

The fracture in an oblique fibre was realized by effec-

tively removing bonds belonging to the fibreat: L/2 ~ Acknowledgements _

in a plane perpendicular to the external strain. The reVIR thanks the Finnish Cultural Foundation and the
sults for pressure increases next to the fracturing poinficademy of Finland for financial support. The authors
are similar to those presented above for a fibre oriente®ish to express their gratitude to the participants of the

parallel to the external strain (Fig. 14). Notably, how- SFB 381 programme for interesting discussions and

ever, the magnitude of the increases in the pressure af@mments.

smaller, especially for narrower fibres. This can be at-
tributed to shear stresses, which tend to straighten the

two halves of the fibre being distributed on an areaReferences

1.
2.
3.

which is large in comparison with the almost point-like
pressure “hot spot” seen in the breaking of a longi-
tudinal fibre. Moreover, for a short fibre, the pressure
increases next to the breaking point are smaller for ana.
oblique fibre than for one oriented in the direction of
the external strain. For longer fibres, on the other hand,g'
tilting of the fibre does not have much effect.
7.
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